Heavy Ion Physics in Future

-- Dense Matter Physics & Critical Point Search

Nu Xu

Nuclear Science Division
Lawrence Berkeley National Laboratory

Many Thanks to the Organizers!

S. Gupta, F. Liu, V. Koch, X.F. Luo, B. Mohanty, H.G. Ritter, M. Stephanov, K.J. Wu, P.F. Zhuang

Basics on Quantum Chromodynamics

- Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter.
- 2) Gluons hold quarks together to from hadrons:

meson

baryon

3) Gluons and quarks, or partons, typically exist in a color singlet state: *confinement.*

The QCD Phase Diagram and High-Energy Nuclear Collisions

Timeline of QCD and Heavy Ion Facilities

STAR Detectors: Full 2π particle identification!

STAR Physics Focus

Structure of Nucleon

Structure of Cold Nuclear Matter

Structure of Hot/Dense Matter

Matter with partonic degrees of freedom. Theory of QCD.

Outline

- (1) Introduction
- (2) Recent results from RHIC
- (3) Two Proposals: for exploring the locating QCD phase diagram
- (4) Summary and Outlook

Search for Local Parity Violation

in High Energy Nuclear Collisions

Animation by Derek Leinweber

Topological transitions have never been observed *directly* (e.g. at the level of quarks in DIS). An observation of the *spontaneous strong*, *local* **parity violation** would be a clear proof for the existence of the physics.

Chiral Magnetic Effect:

Kharzeev, PL <u>**B633**</u> 260 (06). Kharzeev, et al, NP <u>**A797**</u> 67(07). Kharzeev, et al, NP <u>**A803**</u> 227(08). Fukushima, et al, PR<u>**D78**</u>, 074033(08).

Search for Local Parity Violation

in High Energy Nuclear Collisions

The separation between the same-charge and opposite-charge correlations.

- Strong external EM field
- De-confinement and Chiral symmetry restoration

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \rangle$$

Parity even observable Voloshin, PR <u>C62</u>, 044901(00).

STAR; arXiv: 0909.1739 (PRL); 0909.1717 (PRC).

First Observation of ${}_{\overline{\Lambda}}{}^{3}\overline{H} \rightarrow {}^{3}\overline{H}e + \overline{\pi}^{-}$

Particle type	Ratio			
$^3_{\bar{\Lambda}}\bar{H}/^3_{\Lambda}H$	$0.49 \pm 0.18 ({ m stat.}) \pm 0.07 ({ m sys.})$			
$^3 \bar{\mathrm{He}}/^3 \mathrm{He}$	$0.45 \pm 0.02~(\text{stat.}) \pm 0.04~(\text{sys.})$			
$^3_{\bar{\Lambda}}\bar{H}/^3\bar{He}$	$0.89 \pm 0.28 ({\rm stat.}) \pm 0.13 ({\rm sys.})$			
$^3_{\Lambda} { m H}/^3 { m He}$	$0.82 \pm 0.16 ({ m stat.}) \pm 0.12 ({ m sys.})$			

1st observation anti-hyper nucleus!

- (1) Strangeness production saturated
- (2) Coalescence at work

Submitted to **Science** by STAR

Anisotropy Parameter v₂

coordinate-space-anisotropy

mo

momentum-space-anisotropy

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

Partonic Collectivity at RHIC

Low $p_T (\le 2 \text{ GeV/c})$: hydrodynamic mass ordering High $p_T (> 2 \text{ GeV/c})$: *number of quarks ordering*

- => Collectivity developed at partonic stage!
- => De-confinement in Au+Au collisions at RHIC!

Collectivity, De-confinement at RHIC

- v₂ of light hadrons and multi-strange hadrons
- scaling by the number of quarks

At RHIC:

- n_q-scaling novel hadronization process
- □ Partonic flow De-confinement

PHENIX: PRL<u>91</u>, 182301(03) STAR: PRL<u>92</u>, 052302(04), <u>95</u>, 122301(05) nucl-ex/0405022, QM05

S. Voloshin, NPA715, 379(03) Models: Greco et al, PR<u>C68</u>, 034904(03) Chen, Ko, nucl-th/0602025 Nonaka et al. <u>PLB583</u>, 73(04) X. Dong, et al., Phys. Lett. <u>B597</u>, 328(04).

sQGP and the QCD Phase Diagram

In 200 GeV Au+Au collisions at RHIC, strongly interacting matter formed:

- Jet energy loss: R_{AA}
- Strong collectivity: v₀, v₁, v₂
- Hadronization via coalescence: n_α-scaling

Questions:

Is thermalization reached at RHIC?

- Systematic analysis with dN/dp_T and dv₂/dp_T results...
- Heavy quark and di-lepton measurements

When (at which energy) does this transition happen? What does the QCD phase diagram look like?

- RHIC beam energy scan

The QCD Critical Point

RHIC (200) & LHC: Determine the temperature T_{ini} , T_{C}

BES: Explore the QCD phase diagram T_E and the location phase boundary

- Low baryon density, cross over
- LGT calculation, universality, and models hinted the existence of the critical point on the QCD phase diagram* at finite baryon chemical potential.
- Experimental evidence for either the critical point and/or 1st order transition is important for our knowledge of the QCD phase diagram*.

* Thermalization assumed

M. Stephanov, K. Rajagopal, and E. Shuryak, PRL <u>81</u>, 4816(98); K. Rajagopal, PR <u>D61</u>, 105017 (00)

http://www.er.doe.gov/np/nsac/docs/Nuclear-Science.Low-Res.pdf

RHIC run10 Physics Programs

RHIC cool down early Dec.

STAR shift starts Dec. 15th

Beam Energy (GeV)	25 cryo- week	30 cryo- week	20 cryo- week CR	Physics
200	10	10	10	Thermalization $J/\Psi v_2, m_{ee}$
62.4	4	4	5	
39	1	1.5		
27	2	4.5		BES programs, T _E , phase boundary
18	0	1.5		
11.5	2	2.5	2.5	
7.7	1	1	2.5	

Exploring the QCD Phase Diagram

- (1) Proposal II: NQ scaling in v_2 for locating the possible QCD phase boundary
- (2) Proposal I: *high moments* for locating the possible QCD critical point

BERKELEY LAB

Susceptibilities and High Moments

(I) Susceptibilities from the lattice QCD calculations

$$\chi_{2}^{X} = \frac{1}{VT^{3}} \left\langle \delta N_{X}^{2} \right\rangle$$

$$\chi_{4}^{X} = \frac{1}{VT^{3}} \left[\left\langle \delta N_{X}^{4} \right\rangle - 3 \left\langle \delta N_{X}^{2} \right\rangle^{2} \right]$$

$$\chi_{4}^{X} / \chi_{2}^{X} \Rightarrow \kappa^{X}$$

(II) At the CP at finite value of μ_B , the power of the correlation length of the system is proportional to the order of the moments:

$$\langle (\delta N)^2 \rangle \propto \xi^2, \qquad \langle (\delta N)^3 \rangle \propto \xi^{4.5} \qquad \langle (\delta N)^4 \rangle - 3\langle (\delta N)^2 \rangle^2 \propto \xi^7$$

Increase of the *non-Gaussian* fluctuation at the critical point

M. Stephanov, PRL <u>102</u>, 032301(09)

Observables: χ_q , χ_S

Event by Event:

- 1. net-proton Kurtosis $K_p(E)$
- 2. two proton correlation function $C_2(E)$
- 3. ratio of the d/p
- 4. ratio of K/p

$$K_p = \frac{\left\langle N_p^4 \right\rangle - 3\left\langle N_p^2 \right\rangle^2}{\left\langle N_p^2 \right\rangle}$$

M. Cheng et al., PRD79, 074505(09);arXiv:0811.1006 F. Karsch, INT, 08 M. A. Stephanov, PRL**102**, 032301(09)

450

Basics on Skewness and Kurtosis

Mean: $M = \langle N \rangle$

Variance: $\sigma^2 = \left\langle \left(N - \left\langle N \right\rangle \right)^2 \right\rangle$

Skewness: $s = \frac{\left\langle \left(N - \left\langle N \right\rangle \right)^3 \right\rangle}{\sigma^3}$

Kurtosis: $\kappa = \frac{\left\langle \left(N - \left\langle N \right\rangle \right)^4 \right\rangle}{\sigma^4} - 3$

s(Gaussian) = κ (Gaussian)=0, **Probe of non-Gaussian fluctuation.**

Random Sources and Critical Point

- (1) The sum of independent thermal sources is also a random thermal source. The multiplicity distribution is *Possion* and follows the CLT.
- (2) In the absence of CP, it can be shown:

$$\kappa * \sigma^2 = const.$$
 $\Longrightarrow_{\mathcal{S}} \propto \frac{\chi_4}{\chi_2} T^2$

$$s* \sigma = const.$$
 $\Longrightarrow_{\mathcal{S}} \propto \frac{\chi_4}{\chi_2} T$

- (3) Energy and centrality (volume) dependence of the non-Gaussian behavior => **Critical Point!**
- (4) Extract thermodynamic *properties of* the medium!

Higher Moments Analysis (BES)

- Higher moments are more sensitive to QCD critical point related fluctuation.
- 2) The 4th moment, Kurtosis, is directly related to the corresponding thermodynamic quantity: susceptibility of conserved quantum numbers such as Baryon number and strangeness.

κ•σ² vs. Collision Energy

- Energy and centrality dependence of $\kappa ullet \sigma^2$
- Flat results from models without the CP

Nu Xu

Summary I

- Beam energy scan (BES) at RHIC is an important/ necessary step forward for exploring the QCD phase diagram with high-energy nuclear collisions
- 2) LGT predicts a spike at finite value of μ_B indicating the existence of CP
- 3) $\kappa \times \sigma^2$ for net-protons are consistent with unity for the beam energy range: $\sqrt{s_{NN}} = 200 62.4 19.6$ GeV at RHIC. Other conventional observables should also be studied.

Anisotropy Parameter v₂

coordinate-space-anisotropy

mo

momentum-space-anisotropy

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

Au+Au Collisions at 9.2 GeV AMPT (v2.1)

- J. Tian et al, Phys. Rev. <u>C79</u>, 067901(2009).
- (a) Patonic matter: coalescence of massive quarks for hadronization
 - → Clear NQ scaling in v₂!
- (b) Hadronic matter: rescatterings amongst hadrons
 - \rightarrow No NQ scaling in v_2 !

Nu Xu

Observable*: Quark Scaling in v₂

Summary II

- 1) NQ scaling in v₂: partonic collectivity & deconfinement in high-energy nuclear collisions.
- 2) Scaling in v_2 : partonic dof dominants No scaling in v_2 : hadronic dof dominants
- 3) The multi-strange hadrons are particularly clean for the search, φ, for example.

Other Observables

- (1) Local parity violation
- (2) Event-by-Event fluctuations: N(K)/N(pion), N(K)/N(p), $< p_T >$, ...
- (3) Correlation functions:
 BB, MM, MB, clusters, light nuclei
- (4) ... Chiral properties (?)

Observables and Advantages

Torrieri

For STAR:

- Large acceptance: full azimuthal coverage and |y| < 1.0
- Clean particle identification: (TPC, ToF, EMC)
- Acceptance does **not** change with beam energy, systematic errors under control
- Lower luminosity at lower beam energies. Fixed target exp. will be better

STAR Detector

Collider Acceptance

The QCD Phase Diagram and High-Energy Nuclear Collisions

